11 research outputs found

    A sequential handwriting recognition model based on a dynamically configurable CRNN

    Get PDF
    Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods

    Infinite-term memory classifier for wi-fi localization based on dynamic Wi-Fi Simulator

    Get PDF
    Wi-Fi localization is an active research topic, and various challenges are not yet resolved in this field. Researchers develop models and use benchmark datasets for Wi-Fi or fingerprinting to create a quantitative comparative evaluation. These benchmarking datasets are limited by their failure to support dynamical navigation. As a result, Wi-Fi models are only evaluated as usual classifiers without including actual navigation maneuvers in the evaluation, which makes the models incapable of handling the actual navigation behavior and its impact on the performance. One common navigation behavior is the cyclic dynamic behavior, which occurs frequently in the indoor environment when a person visits the same place or location multiple times or repeats the same trajectory or similar one more than once. For this purpose, we developed two models: a simulation model for generating time series data to support actual conducted navigation scenarios and a Wi-Fi classification model to handle dynamical scenarios generated by the simulator under cyclic dynamic behavior. Various testing scenarios were conducted for evaluation, and a comparison with benchmarks was performed. Results show the superiority of our developed model which is infinite-term memory online sequential extreme learning machine (OSELM) to the benchmarks with a percentage of 173% over feature adaptive OSELM and 1638% over OSELM

    MFA-OSELM Algorithm for WiFi-Based Indoor Positioning System

    Get PDF
    Indoor localization is a dynamic and exciting research area. WiFi has exhibited a tremendous capability for internal localization since it is extensively used and easily accessible. Facilitating the use of WiFi for this purpose requires fingerprint formation and the implementation of a learning algorithm with the aim of using the fingerprint to determine locations. The most difficult aspect of techniques based on fingerprints is the effect of dynamic environmental changes on fingerprint authentication. With the aim of dealing with this problem, many experts have adopted transfer-learning methods, even though in WiFi indoor localization the dynamic quality of the change in the fingerprint has some cyclic factors that necessitate the use of previous knowledge in various situations. Thus, this paper presents the maximum feature adaptive online sequential extreme learning machine (MFA-OSELM) technique, which uses previous knowledge to handle the cyclic dynamic factors that are brought about by the issue of mobility, which is present in internal environments. This research extends the earlier study of the feature adaptive online sequential extreme learning machine (FA-OSELM). The results of this research demonstrate that MFA-OSELM is superior to FA-OSELM given its capacity to preserve previous data when a person goes back to locations that he/she had visited earlier. Also, there is always a positive accuracy change when using MFA-OSELM, with the best change achieved being 27% (ranging from eight to 27% and six to 18% for the TampereU and UJIIndoorLoc datasets, respectively), which proves the efficiency of MFA-OSELM in restoring previous knowledge

    Feature adaptive and cyclic dynamic learning based on infinite term memory extreme learning machine

    Get PDF
    Online learning is the capability of a machine-learning model to update knowledge without retraining the system when new, labeled data becomes available. Good online learning performance can be achieved through the ability to handle changing features and preserve existing knowledge for future use. This can occur in different real world applications such as Wi-Fi localization and intrusion detection. In this study, we generated a cyclic dynamic generator (CDG), which we used to convert an existing dataset into a time series dataset with cyclic and changing features. Furthermore, we developed the infinite-term memory online sequential extreme learning machine (ITM-OSELM) on the basis of the feature-adaptive online sequential extreme learning machine (FA-OSELM) transfer learning, which incorporates an external memory to preserve old knowledge. This model was compared to the FA-OSELM and online sequential extreme learning machine (OSELM) on the basis of data generated from the CDG using three datasets: UJIndoorLoc, TampereU, and KDD 99. Results corroborate that the ITM-OSELM is superior to the FA-OSELM and OSELM using a statistical t-test. In addition, the accuracy of ITM-OSELM was 91.69% while the accuracy of FA-OSELM and OSELM was 24.39% and 19.56%, respectively

    Quality of Service (QoS) Management for Local Area Network (LAN) Using Traffic Policy Technique to Secure Congestion

    No full text
    This study presents the proposed testbed implementation for the Advanced Technology Training Center (ADTEC) Batu Pahat, one of Malaysia’s industrial training institutes. The objectives of this study are to discover the issues regarding network congestion, propose a suitable method to overcome such issues, and generate output data for the comparison of the results before and after the proposed implementation. The internet is directly connected to internet service providers (ISPs), which neither impose any rule nor filter the traffic components; all connections comply on the basis of the base effort services provided by the ISP. The congestion problem has been raised several times and the information technology (IT) department has been receiving complaints about poor and sometimes intermittent internet connection. Such issues provide some ideas for a possible solution because the end client is a human resource core business. In addition, budget constraints contribute to this problem. After a comprehensive review of related literature and discussion with experts, the implementation of quality of service through add-on rules, such as traffic policing on network traffic, was proposed. The proposed testbed also classified the traffic. Results show that the proposed testbed is stable. After the implementation of the generated solution, the IT department no longer receives any complaints, and thus fulfills the goal of having zero internet connection issues

    Hyper-Angle Exploitative Searching for Enabling Multi-Objective Optimization of Fog Computing

    No full text
    Fog computing is an emerging technology. It has the potential of enabling various wireless networks to offer computational services based on certain requirements given by the user. Typically, the users give their computing tasks to the network manager that has the responsibility of allocating needed fog nodes optimally for conducting the computation effectively. The optimal allocation of nodes with respect to various metrics is essential for fast execution and stable, energy-efficient, balanced, and cost-effective allocation. This article aims to optimize multiple objectives using fog computing by developing multi-objective optimization with high exploitive searching. The developed algorithm is an evolutionary genetic type designated as Hyper Angle Exploitative Searching (HAES). It uses hyper angle along with crowding distance for prioritizing solutions within the same rank and selecting the highest priority solutions. The approach was evaluated on multi-objective mathematical problems and its superiority was revealed by comparing its performance with benchmark approaches. A framework of multi-criteria optimization for fog computing was proposed, the Fog Computing Closed Loop Model (FCCL). Results have shown that HAES outperforms other relevant benchmarks in terms of non-domination and optimality metrics with over 70% confidence of the t-test for rejecting the null-hypothesis of non-superiority in terms of the domination metric set coverage

    MFA-OSELM algorithm for WiFi-based indoor positioning system

    Get PDF
    Indoor localization is a dynamic and exciting research area. WiFi has exhibited a tremendous capability for internal localization since it is extensively used and easily accessible. Facilitating the use of WiFi for this purpose requires fingerprint formation and the implementation of a learning algorithm with the aim of using the fingerprint to determine locations. The most difficult aspect of techniques based on fingerprints is the effect of dynamic environmental changes on fingerprint authentication. With the aim of dealing with this problem, many experts have adopted transfer-learning methods, even though in WiFi indoor localization the dynamic quality of the change in the fingerprint has some cyclic factors that necessitate the use of previous knowledge in various situations. Thus, this paper presents the maximum feature adaptive online sequential extreme learning machine (MFA-OSELM) technique, which uses previous knowledge to handle the cyclic dynamic factors that are brought about by the issue of mobility, which is present in internal environments. This research extends the earlier study of the feature adaptive online sequential extreme learning machine (FA-OSELM). The results of this research demonstrate that MFA-OSELM is superior to FA-OSELM given its capacity to preserve previous data when a person goes back to locations that he/she had visited earlier. Also, there is always a positive accuracy change when using MFA-OSELM, with the best change achieved being 27% (ranging from eight to 27% and six to 18% for the TampereU and UJIIndoorLoc datasets, respectively), which proves the efficiency of MFA-OSELM in restoring previous knowledge

    Knowledge preserving OSELM model for Wi-Fi-based indoor localization

    Get PDF
    Wi-Fi has shown enormous potential for indoor localization because of its wide utilization and availability. Enabling the use of Wi-Fi for indoor localization necessitates the construction of a fingerprint and the adoption of a learning algorithm. The goal is to enable the use of the fingerprint in training the classifiers for predicting locations. Existing models of machine learning Wi-Fi-based localization are brought from machine learning and modified to accommodate for practical aspects that occur in indoor localization. The performance of these models varies depending on their effectiveness in handling and/or considering specific characteristics and the nature of indoor localization behavior. One common behavior in the indoor navigation of people is its cyclic dynamic nature. To the best of our knowledge, no existing machine learning model for Wi-Fi indoor localization exploits cyclic dynamic behavior for improving localization prediction. This study modifies the widely popular online sequential extreme learning machine (OSELM) to exploit cyclic dynamic behavior for achieving improved localization results. Our new model is called knowledge preserving OSELM (KP-OSELM). Experimental results conducted on the two popular datasets TampereU and UJIndoorLoc conclude that KP-OSELM outperforms benchmark models in terms of accuracy and stability. The last achieved accuracy was 92.74% for TampereU and 72.99% for UJIndoorLoc

    Performance evaluation of online machine learning models based on cyclic dynamic and feature-adaptive time series

    Get PDF
    Machine learning is becoming an attractive topic for researchers and industrial firms in the area of computational intelligence because of its proven effectiveness and performance in resolving real-world problems. However, some challenges such as precise search, intelligent discovery and intelligent learning need to be addressed and solved. One most important challenge is the non-steady performance of various machine learning models during online learning and operation. Online learning is the ability of a machine-learning model to modernize information without retraining the scheme when new information is available. To address this challenge, we evaluate and analyze four widely used online machine learning models: Online Sequential Extreme Learning Machine (OSELM), Feature Adaptive OSELM (FA-OSELM), Knowledge Preserving OSELM (KP-OSELM), and Infinite Term Memory OSELM (ITM-OSELM). Specifically, we provide a testbed for the models by building a framework and configuring various evaluation scenarios given different factors in the topological and mathematical aspects of the models. Furthermore, we generate different characteristics of the time series to be learned. Results prove the real impact of the tested parameters and scenarios on the models. In terms of accuracy, KP-OSELM and ITM-OSELM are superior to OSELM and FA-OSELM. With regard to time efficiency related to the percentage of decreases in active features, ITM-OSELM is superior to KP-OSELM

    Kalman Filter and wavelet cross-correlation for VHF broadband interferometer lightning mapping

    Get PDF
    Lightning mapping systems based on perpendicular crossed baseline interferometer (ITF) technology have been developed rapidly in recent years. Several processing methods have been proposed to estimate the temporal location and spatial map of lightning strikes. In this paper, a single very high frequency (VHF) ITF is used to simulate and augment the lightning maps. We perform a comparative study of using different processing techniques and procedures to enhance the localization and mapping of lightning VHF radiation. The benchmark environment involves the use of different noise reduction and cross-correlation methods. Moreover, interpolation techniques are introduced to smoothen the correlation peaks for more accurate lightning localization. A positive narrow bipolar event (NBE) lightning discharge is analyzed and the mapping procedure is confirmed using both simulated and measured lightning signals. The results indicate that a good estimation of lightning radiation sources is achieved when using wavelet denoising and cross-correlations in wavelet-domain (CCWD) with a minimal error of 3.46ffi. The investigations carried out in this study confirm that the ITF mapping system could effectively map the lightning VHF radiation source
    corecore